Dr Pere Fullana i Palmer, head of the New Materials line of research:

“Drawing on our extensive expertise in environmental, economic and social assessments, we analyse new materials and technologies developed by producers and provide them with sustainable development, ecodesign and circular economy alternatives. By doing so, we can guide and inform businesses, manufacturers and policymakers about the environmental impacts of their new products and technologies.”

PARTNERSHIP AND NETWORKS

The Chair works with the Laboratory of Paper Engineering and Polymer Materials (LEPAMAP) at the University of Girona on several nanotechnology projects in the paper industry.

In addition to its collaborations with universities, the Chair also welcomes partners from within the industry. The GCR Group (Tarragona, Spain) and the Chair are working together to assess how plastic granules with mineral fillers can be used in food packaging.

Key papers

Delgado-Aguilar, M., Puig, R., Sazdovski, I., Fullana-i-Palmer, P., (2020)

Circular economy comes to break the linear resource to waste economy, by introducing different strategies, two of them being: using material from renewable sources and producing biodegradable products. The present work aims at developing polylactic acid (PLA), typically made from fermented plant starch, and polycaprolactone (PCL) blends, a biodegradable polyester, to study their potential to be used as substitutes of oil-based commodity plastics. For this, PLA/PCL blends were compounded in a batch and lab scale internal mixer and processed by means of injection molding. Tensile and impact characteristics were determined and compared to different thermoplastic materials, such as polypropylene, high density polyethylene, polystyrene, and others. It has been found that the incorporation of PCL into a PLA matrix can lead to materials in the range of 18.25 to 63.13 megapascals of tensile strength, 0.56 to 3.82 gigapascals of Young’s modulus, 12.65 to 3.27 percent of strain at maximum strength, and 35 to 2 kJ/m2 of notched impact strength. The evolution of the tensile strength fitted the Voigt and Reuss model, while Young’s modulus was successfully described by the rule of mixtures. Toughness of PLA was significantly improved with the incorporation of PCL, significantly increasing the energy required to fracture the specimens. Blends containing more than 20 wt% of PCL did not break when unnotched specimens were tested. Overall, it was found that the obtained PLA/PCL blends can constitute a strong and environmentally friendly alternative to oil-based commodity materials.

This study presents a method based on life cycle assessment to reduce and simplify the decision-making process and to identify the best available techniques of a product. This procedure facilitates the selection of a technical alternative from an environmental point of view and the reduction of emission levels and the consumption of energy and primary resources. This method comprises the following four steps: (i) the identification of the current techniques of a specific product, (ii) the application of a life cycle assessment to determine the hot spots, (iii) the proposal of the best available techniques and (iv) the development of a best available techniques reference document (step not implemented in our case study). The Cantabrian anchovy canning industry is selected as a case study due to the importance of this sector from economic, social and touristic points of view. An entire life cycle assessment of one can of anchovies in extra virgin olive oil is conducted. The results indicated that the hot spots of the life cycle were the production of aluminium cans (for packaging) and extra virgin olive oil and the management of the packaging waste. According to these results, the study proposes several improvements, such as packaging recycling and several best available techniques for the canned anchovy product.

Key projects

One of the main drivers for companies to perform environmental improvements is economic benefit, either by obtaining a more valuable product or gaining new customers. Circular economy combines environmental improvements with these drivers to achieve higher and quicker benefits. This paper is a case study on packaging eco-design aligned with circular economy strategy along the production chain. Life cycle assessment (LCA) was used to identify the product life cycle stages where the application of eco-design strategies would be more efficient (in this case, raw materials production from virgin petrochemicals). To improve the environmental profile of this packaging, virgin petrochemicals were partially replaced by mineral fillers (calcium carbonate based) or/and post-consumer recycled plastics. Different technically compliant cosmetic tubes were produced by collaboration between a company producing the plastic granulates with mineral fillers and a company producing the cosmetic tubes and cradle-to-gate LCA were performed. The replacement of virgin petrochemicals by mineral fillers helped to reduce the environmental impacts by an average of 12% and the use of post-consumer recycled plastic further decreased emissions up to 29% for 6 out of the 9 evaluated impact categories. The option with better environmental performance was also the one with lower economic costs.

According to the involved companies, LCA combined with ecodesign helped to achieve efficient environmental and economic savings. The findings are important for the plastic packaging sector because they tackle with prime concerns, like plastic debris, climate change and resource depletion. They are of main interest for industrial activities where brand positioning is a priority (i.e. cosmetics).

El objetivo del proyecto es evaluar los impactos ambientales de los compuestos plásticos con aditivos minerales a través del uso de metodología ACV mejorada. La aplicación de los compuestos a diferentes aplicaciones de envasado de alimentos se analiza a lo largo del ciclo de vida de las mismas.

El objetivo del proyecto es fomentar la ecoinnovación y la mejora medioambiental de la fabricación de productos de arcilla para la construcción, al mismo tiempo que aumenta la competitividad de este sector en España. El resultado principal del proyecto incluye el desarrollo de una herramienta para ayudar a los productores españoles de materiales a base de arcilla para la construcción a obtener Declaraciones Ambientales de Producto (DAP) de manera rentable.

El objetivo general del proyecto es desarrollar una herramienta simplificada que permita a los fabricantes de productos cerámicos estructurales obtener Declaraciones Ambientales de Producto (DAP) de una manera más rápida y competitiva. El objetivo es promover la ecoinnovación y la mejora medioambiental en la fabricación de los productos cerámicos y aumentar la competitividad del sector español de cerámica estructural.

Copyright © 2020
All rights reserved.
UNESCO Chair in Life Cycle and
Climate Change ESCI-UPF

Passeig Pujades 1, 08003
Barcelona, España
(+34) 93 295 4710
unescochair@esci.upf.edu